三亿体育为了一只猫的死活,100 年前的天才哲学家,学历最高的足球运动员,撩妹无数的量子力学教授……他们都在纠结个啥?如果你完全不懂量子力学,请放心大胆地往下看,我保证不用任何公式就能让你秒懂。
116 年前的 12 月 12 日,马可尼收到横跨大西洋、人类史上第一个无线电信号的那一天。
包括马可尼自己,当时没有人能够想象,在接下来的一百多年,通信会把世界变成什么样子。
2016 年 8 月 16 日,世界第一颗量子通信卫星「墨子号」从酒泉发射的那一天。
就像当年的马可尼一样,我们也无从想象,未来的量子计算与量子通信,终将带来一个怎样的魔法时代。
5 年后,人人都会用无法破解的加密网络刷信用卡。你还觉得量子理论是象牙塔里的黑科技,和你的生活毫无关系?
如果你完全不懂量子力学,请放心大胆地往下看,我保证不用任何公式就能让你秒懂,连 1+1=2 的幼儿园数学基础都不需要。
如果你自以为懂量子力学,请放心大胆地往下看,我保证你看完会仰天长叹:什么是量子力学啊?
正如量子力学大师费曼所说:没有人懂量子力学。如果你觉得懂了,那肯定不是真懂。
在烧脑、反直觉和毁人三观方面,没有任何学科能够和量子力学相比。如果把理工男最爱的大学比作霍格沃兹魔法学校,那么唯一和量子力学专业相提并论的,只能是黑魔法。
然而,量子理论之所以如此神秘,并不是因为物理学家的故弄玄虚。其实,在量子理论刚诞生的摇篮时期,它只是一门人畜无害的学科,专门研究电子、光子之类小玩意儿。
而「量子」这个现在看来很厉害的名字,本意不过是指微观世界中「一份一份」的不连续能量。
20 世纪初,物理学家开始重点纠结一个纠结了上百年的问题:光,到底是波还是粒子?
很多著名科学家(牛顿、爱因斯坦、普朗克)做了很多权威的实验,确凿无疑地证明了光是一种粒子。
很多著名科学家(惠更斯、杨、麦克斯韦、赫兹)做了很多权威的实验,确凿无疑地证明了光是一种波,电磁波。
于是自古以来,塞伯坦星上的科学家就分成两派:波派和粒派,两派之间势均力敌的百年撕逼战争从未分出胜负。
很多人问我:科学家为什么要为这种事情势不两立,大家搁置争议、共同研究不就得了。
且问你:《权力的游戏》中,信奉七神的维斯特洛人民,为何要与信奉旧神的关外野人拼个你死我活?
唯一的和谐社会可能是古希腊:他们的神多达百八十号,有管天上、有管地下,各路神仙各司其职,倒也井水不犯河水。
要命的是,科学家们信仰的神只有一个,而且是放之宇宙而皆准的全能大神。这位神祇的名字,叫作真理。
大到宇宙的诞生,小到原子的运转,科学家们相信,这个世界的万事万物都是基于同一个规律,可以用同一个理论,甚至同一套方程解释一切。比如,让苹果掉下来把牛顿砸晕的是万有引力,让月亮悬在空中掉不下来的也是万有引力。用同一个方程,既能算出地球的质量,也能让马斯克的猎鹰九号火箭上天,这就是科学的威力。
当然,科学家们没有谁敢自称是真理的代言人,就连牛顿谦虚起来都是这样的:「我只是一个在海滩上捡贝壳的孩子,而真理的大海,我还没有发现啊!」
整个科学史,就像一个集卡拼图的过程。做实验的科学家们每发现一个科学现象,搞理论的科学家们就绞尽脑汁推测它背后的运行规律。不同领域的大牛把各方面的知识、理论慢慢拼到一起,真理的图像就渐渐清晰。
在 20 世纪初,光学的知识储备和数学理论越来越完善。大家逐渐觉得,这一块的真相总算有希望拼出来了——结果却发现,波派和粒派的理论早已背道而驰,还各自越走越远。这就好比你集了一辈子卡片,自以为拼得差不多了。这时突然发现,你拼出的图案居然和别人是不一样的,而且差的不是一点点!
双方僵持不下直到 1924 年,终于有人大彻大悟:波 or 粒,为什么光不能两者都是呢?
也许在某些时候,粒子看起来就像是波;在另一些时候,波看起来就像是粒子。波和粒如同阴阳一般相生相克,就像一枚硬币的正反两面(波粒二象性),只不过我们一直以来都在盲人摸象、各执一词。
用一个发射光子的机枪对着双缝扫射,从缝中漏过去的光子,打在缝后面的屏上,就会留下一个光斑。(等效于 1961 年电子双缝干涉实验)
光子像机枪发射的子弹一样笔直地从缝中穿过,那么屏幕上留下的一定是 2 道杠,因为其他角度的光子都被板挡住了。
光子穿过缝时,会形成 2 个波源。两道波各自震荡交汇(干涉),波峰与波峰之间强度叠加,波峰与波谷之间正反抵消,最终屏幕上会出现一道道复杂唯美的斑马线(干涉条纹)。
是波是粒还是二合一,看屏幕结果一目了然,无论实验结果如何,都在我们的预料之中。
这样,我们再做一次实验,把光子一个一个地发射出去,看会怎么样,一定会变成两道杠的!
结果:斑马线,竟然还是斑马线,怎么可能?我们明明是一、个、一、个把光子发射出去的啊!
最令人震惊的是,一开始光子数量较少时,屏幕上的光点看上去一片杂乱无章,随着积少成多,渐渐显出了斑马线条纹!
问题是:根据波动理论,斑马线来源于双缝产生的两个波源之间的干涉叠加;而单个光子要么穿过左缝、要么穿过右缝,穿过一条缝的光子到底是在和谁发生干涉?
难道……光子在穿过双缝时分裂成了两个?一个光子分裂成左半光子和右半光子,自己的左手和右手发生了关系?事情好像越来越复杂了。干脆一不做二不休,我们倒要看看,光子究竟是怎样穿过缝的。
第三次实验:在屏幕前加装两个摄像头,一边一个左右排开。哪边的摄像头看到光子,就说明光子穿过了哪条缝。同样,还是点射模式发射光子。
结果:每次不是左边的摄像头看到一个光子,就是右边看到一个。一个就是一个,从来没有发现哪个光子分裂成半个的情况。
大家都松了一口气。光子确实是一个个粒子,然而在穿过双缝时,不知怎么就会变形成两道波同时穿过,形成干涉条纹。
虽然诡异了些,不过据说这就是波粒二象性了,具体细节以后再研究吧,这个实验做得人都要精分了。
一个貌似简单的小实验做到这份上,波和粒子什么的已经不重要了,重要的是现在全世界的科学家都懵逼了。
在球迷看来:球进还是不进,和射手是不是 C 罗、梅西有关,和对方门将的状态有关,和裁判收没收钱说不定还有关。
在科学家看来:有关的东西更多,比如球的受力、速度和方向,距离球门的距离,甚至草皮的摩擦力、球迷吼声的分贝数等等。
不过,只要把这些因素事无巨细地考虑到方程里计算,完全可以精确预测三秒后球的状态。但无论是谁,大家都公认的是,球进与不进,至少和一件事情是绝对无关的:
无论你用什么品牌的电视,无论电视的屏幕大小、清晰度高低、质量好坏,无论你看球时是在喝啤酒还是啃炸鸡,当然更无论你看不看电视直播——该进的球还是会进,该不进就是不进,哪怕你气得把电视机砸了都没用。
双缝干涉的第三次实验证明了,在其他条件完全相同的情况下,球进还是不进,直接取决于在射门的一瞬间,你看还是不看电视!
光子从发射器射向双缝,就好比足球射向球门;用摄像头观测光子是否进缝、怎么个进法,就好比用电视机看进球。
第三次实验与第二次的唯一区别,就是实验 3 开了摄像头观察光子(看电视),实验 2 没放摄像头(不看电视)——两次实验的结局竟截然不同。
难道说,「光子是什么」这一客观事实,是由我们的观察(放不放摄像头)决定的?
在所有人懵逼的时候,还是有极少数聪明人,勇敢地提出了新的理论: 光子,其实是一种智能极高的外星 AI 机器人。
之所以观察会导致实验结果不同,是因为光子在你做实验之前就悄悄侦查过了,如果发现有摄像头,它就变成粒子形态;如果发现是屏幕,就变成波的形态。
难道机器人阿童木真的存在?(「阿童木」是日语「アトム」的发音直译,词语源自英语「Atom」,意即「原子」)
这种扯淡理论居然没被口水喷死,还要做实验去验证它,可见科学家们已经集体懵逼到了什么地步。
我们算好光子穿过缝的时机,等它穿过之后,再以迅雷不及掩耳之势加上摄像头。(等效于 1978 年惠勒延迟选择实验)
无论加摄像头的速度有多快,只要最终加上了摄像头,屏幕上一定是两道杠;反过来,如果一开始有摄像头,哪怕在最后一刻秒秒钟撤掉,屏幕上一定是斑马线。
回到看球赛的那个例子,就好比:我先闭上眼睛不看电视,等球员完成射门、球飞出去 3 秒钟后,我突然睁开眼睛,球一定不进,百试百灵。
在你冲出门去买足彩之前,我先悄悄提醒你:这种魔咒般的黑科技,目前只能对微观世界的基本粒子起作用。要用意念控制足球这样的大家伙,量子还做不到啊!
请注意,加不加摄像头,是在光子已经穿过双缝之后再决定的。不管光子在穿缝的时候变成什么形态,过了缝应该就定型了。
既然光子的状态在加摄像头之前就定型了,为什么实验结果还是能在最后一刻发生变化?
难道说,在之后做出的人为选择(未来),能够改变之前已经发生的事实(历史)?
而且,加摄像头的速度,可以做到非常快(40纳秒)。就算光子真的是个狡猾的微型变形金刚,当它变成波的形态穿过双缝,在最后一刻却发现面前是一个摄像头时,它也来不及再次变身了吧?
好端端一个实验弄得谣言四起,物理学家们纷纷感到几百年来苦心经营的科学体系正在崩塌。
为了一只猫的死活,100 年前的天才哲学家,学历最高的足球运动员,撩妹无数的量子力学教授……他们都在纠结个啥?
另一些人,却恰恰相反——他们做任何事,都是为了纠结,下面我要说的,就是另一些人的故事。
23 岁,是时候做个决定了。比自己小两岁的弟弟,已经成为国奥队的中场核心。在刚刚结束的伦敦奥运会上,哈那德·玻尔率丹麦队 17:1血洗法国队,斩获银牌创造「丹麦童话」,一夜之间成为家喻户晓的球星。
而我,作为丹麦最强俱乐部——哥本哈根 AB 队的主力门将,居然从未入选国家队,这简直是一种耻辱。
上次和德国米特韦达队踢友谊赛,对手竟敢趁我在门框上写数学公式的时候,用一脚远射偷袭,打断我的思路!最后一刻不还是被我的闪电扑救解围,要是后卫早点上去堵枪眼,那场球踢完就可以交作业了。
是成为世界最伟大的门将,还是成为世界最伟大的物理学家,这是一个问题,我需要纠结一下。
第一章里我们讲到,100 多年前,为了搞清光子究竟是波还是粒子,科学家们被一个貌似简单的「双缝干涉」实验弄到集体「精分」。
我们曾经天真地以为,无论用什么样的姿势看电视直播,都不可能影响球赛结果,可是在微观世界中,这个天经地义的常识好像并不成立,这就是那么多高智商理工男懵逼的原因。
但是在玻尔看来,将宏观世界的经验常识套用到微观世界的科学研究上,纯属自寻烦恼。
通过常识,我们可以理解一个光滑小球的物理属性;但是凭什么断定,组成这个小球的万亿亿亿个原子,也一定有着和小球完全相同的属性?
凭什么在微观世界中,原子、电子、光子,一定要遵循和宏观世界同样的物理法则?
严格来说,量子理论是一群人,而不是一个人创立的。但是如果一定要选出一个「量子力学代言人」的话,我觉得非玻尔莫属,因为当别人纠结的时候,他第一个想通了。
在量子世界,一切事物可以同时处于不同的状态(叠加态),各种可能性并存。比如,在双缝干涉实验中,一个光子可以同时处在左缝和右缝。这种人类无法想象的叠加态,才是最普通不过的本质形态;而在我们看来「正常」的非黑即白,才是一种特例。
叠加态是不可能精确测量的。比如,精确测出了粒子的位置,但它的速度却永远测不准!这并不是因为仪器精度不够高,其实,仪器再好都没用。这个不可能是被宇宙规律所禁锢的「不可能」,而非「有可能但目前做不到」。
虽然一切事物都是多种可能性的叠加,但是,我们永远看不到一个既左且右、又黑又白的量子物体。只要进行观测,必然看到一个确定无疑的结果。至于到底看到哪个态则是随机的,其概率高低取决于叠加态中哪个态的成分居多。
没装摄像头:光子在未观测的情况下处于「多种可能性并存」的叠加态,以 50% 的概率同时通过了左缝和右缝,形成干涉条纹;
装上摄像头:光子被观测后只能处于一个态,不能神奇地同时穿双缝了,所以干涉条纹就消失了。
因为完美解释了双缝干涉等灵异现象,玻尔一(四)夜(面)成(树)名(敌)。
比如,没有观测时,光子是混沌中的叠加态;观测的一瞬间,光子就变成了单一的确定态,请问两种态是怎样无缝切换的?
按照玻尔的说法,观测的一瞬间,光子就随机蜕变成多种可能中的一种,还把这个过程取名叫「塌缩」。具体怎么个塌法,玻尔自己也说不清。
再比如,既然触发「塌缩」的前提是「观测」,那么谁能够成为合格的观察者呢?
10 年前,正是薛老师亲手写下了量子波动方程,与矩阵力学、路径积分一起,被后人并称为量子力学的三大基石。
10 年后的 1935 年,对「哥本哈根解释」的群起而攻之,薛老师打响了第一枪。
当时,几乎所有人觉得「叠加态」是个纯属幻想的玩意儿,却没人能真正驳倒玻尔和他的哥本哈根学派。
因为,「态叠加」「测不准」「观察者」无论这三大原理违和感多么强,都被玻尔视作量子世界不可挑战的公理。所谓公理,就像「两点之间有且只有一条直线」,或者牛顿力学三定律一样,是无法、也无须证明的宇宙基本。
在玻尔看来,物理学家的任务是透过现象找规律,而不是去质问上帝:你为什么要把宇宙设计成这样子?
「薛定谔的猫」就是薛老师用来挑战玻尔的头脑实验(以下实验纯属想象、推理,没有任何无辜的猫因此而被害)。
和猫同处一室的还有个自动化装置,内含一个放射性原子:如果原子核衰变,就会激发α射线-射线触发开关-开关启动锤子-锤子落下-打破毒药瓶,于是猫当场毙命。
在这个邪恶的连环机关中,猫的死活直接取决于原子是否衰变;然而,具体什么时候衰变是无法精确预测的随机事件。
1. 原子啊、衰变啊、射线啊,这些都属于你们整天研究的「微观世界」,自然得符合量子三大定律,没错吧?
2. 按照玻尔你自己的说法,在没打开盒子观测之前,这个原子处于「衰变」+「没衰变」的叠加态,没错吧?
3. 既然猫的死活取决于原子是否衰变,而原子又处于「衰/不衰」的叠加态,那是不是意味着,猫也处在「死/没死」的叠加态?
所以,按照哥本哈根解释,箱中的猫是不死不活、又死又活的混沌之猫,直到开箱那一刻才瞬间「塌缩」成一只死猫或者活猫?
薛老师的逻辑,其实就是反证法:以子之矛,攻子之盾。先假装你是完全正确的,然后顺着你的说法推理啊,直到推出一个荒谬透顶的结论——那只能说明你从一开始就错了!
以前大家研究原子、光子,总觉得那是与日常完全不同的另一个世界;无论量子多么诡异三亿体育,我们总可以安慰自己说:微观世界的规律,不一定适用于宏观物体。
现在,薛老师把微观的粒子和宏观的猫绑在一起,要么你承认叠加态什么的都是不切实际的胡思乱想,要么你承认猫是不死不活的叠加态——别纠结,二选一。
连三岁小孩都知道,如果打开箱子看到一只死猫,那说明猫早就死了,而不是开箱的瞬间才死的——只不过它被毒死的时候,你装作没听到惨叫声而已。
你的理论告诉我们,猫在被观测前是不死不活的;那么,如果把你关进一个密室,你不也变成不死不活了吗?或者,在密室中的你看来,全世界的人都是不死不活的僵尸态?还是说,地球和太阳是否存在,都变成不确定的了?
薛老师的猫,本意是想让玻尔下不了台,万万没想到,这只猫却引发了唯心、唯物主义的大辩论。
假设世间一切都是幻觉,所谓人生,也许只是我们的大脑在黑客帝国的 AI 里做的一个梦,说不定身体正插满管子泡在培养皿中。
那么问题来了:如果一切都可能是幻觉,那么,还有没有绝对不是幻觉的东西呢?
其实,唯心主义并不是「我想要什么存在它就存在」,而是「只有我的意识(心)无可置疑,世界却可能是幻觉」。所以,如果你认真看那些唯心主义哲学大师的著作,会发现他们的逻辑严密得令人发指。
而唯物主义者的观点则是「我在故我思」:世界肯定不是幻觉,不过每个人都把自己版本的幻觉当作客观世界的真相。但是,到底哪一个世界观才对呢?
由于唯物主义者无法证明这个世界一定不可能是黑客帝国,而唯心主义者也拿不出这个世界一定就是黑客帝国的确凿证据,所以谁也无法说服对方。
这么说来,主张「心外无物」的明代哲学家王阳明,早在 500 年前就发明了量子力学!
「你未看此花时,此花与汝心同归于寂,你来看此花时,则此花颜色一时明白起来,便知此花不在你的心外。」
未看此花时,花的存在是不确定的叠加态;起心动念的一刹,花才会从不确定态「塌缩」为确定态,你观察的世界因此呈现。
意识与物质互为因果,无法割裂。量子力学的「观测导致塌缩」就是唯心主义的铁证!
然而,很多人至今都不知道「意识决定观测结果」这个名声在外的量子黑科技,其实是道听途说导致的误会。
回到双缝干涉实验,如果科学家故意不观测实验结果,而是用机器自动记录;去掉人类的「意识」干扰,是不是量子态就不会塌缩了?
再比如,做实验时突然飞过一只苍蝇,在它的 N 只复眼注视下,光子的叠加态会因此而塌缩吗?(你以为苍蝇就没有意识吗?)
屏幕结果是代表波动的斑马线还是代表粒子的两道杠,只与实验设备的设置有关,和谁来观测、是否观测无关。
只要实验中双缝全开,哪怕有一亿双眼睛盯着,看见的仍然是未塌缩的叠加态光子产生的干涉条纹。
只要微观粒子处于「可能被精确测量」的环境下,它就会自动塌缩,并不需要等待「观察者」就位。
只不过,我们无法精确测量,只能用概率分布来计算这个客观世界,那么,薛定谔的猫真的存在吗?
一开始,包括薛老师和玻尔本人在内,没有人相信世界上真会有不死不活、既死又活的猫。
可是不久之后,科学家们惊恐地发现,这件看似显然的事,居然没法证伪(证明猫不是叠加态)。
1996年,美国人梦露(男)用单个铍离子制成「薛定谔猫态」并拍下了快照,发现铍离子在第一个位置处于自旋向上的状态,而同时又在第二个位置自旋向下,而这两个状态相距80 纳米之遥!
2004 年,潘建伟团队首次实现了多光子的薛定谔猫态。虽然这只猫的身材依旧苗条——浑身上下只有 5 个光子,但还是令玻尔的追随者信心大增。
这说明,从单个微观粒子到严格意义上的薛猫(宏观量子叠加态),也许只是量变而非质变,它被亲切地称为:薛定谔的小猫。
然而,现实很残酷:目前「薛猫」的最高纪录,仍然是潘建伟 2012 年实现的 8 光子叠加态。要知道,为了增加区区 3 个光子,实验用了整整 8年时间。可想而知,要让猫身上亿个原子同时处于量子叠加态,绝非易事。
在乐观者看来,这不过是暂时的技术困难,假以时日迟早会攻克;但也有人认为,量子世界与宏观世界之间存在着一道天然的结界,像猫一样大的宏观叠加态,也许是这个宇宙明令禁止的。
除了 N 多前女友和养猫以外,薛老师发现了量子的另一个诡异之处,而当时几乎没有人注意到这个问题。
为了研究微观世界,看看原子核这个大西瓜肚子里都有些什么籽儿,科学家祭出了最强大的武器:粒子对撞机。
因为能量守恒原理,子粒子能量相同,方向相反。比如说,因为母粒子静止不动,所以分裂后的子粒子 A 向左边飞,B 一定往右边飞,这样才能左右抵消。同理,A的自旋(角动量)向上,B 的自旋一定向下。
那么问题来了:根据量子理论,在不被观测的情况下,粒子处于多种可能性的叠加态。
就像箱子里那只不死不活的薛定谔的猫一样:A 和 B 这对龙凤胎粒子,自打出娘胎起,他们的性别就没确定,直到有人来看了一眼,这才瞬间分出男女!
然而和薛猫不同的是,箱子里的猫只有一只,孪生粒子却有两个。而且,这两个粒子即使相隔很远很远,叠加态也能保持不变。如同在千里之外,瞬间产生联系……
大家都知道爱因斯坦创立了相对论。但很少有人知道,大神在 35 岁就已经功成名就(完成狭义+广义相对论),而在之后 40年的悠长岁月里,他其实都在纠结一件事:量子力学。
能让爱因斯坦这种大神级人物「不明白」的,不是深奥的理论和复杂的公式,而是宇宙的意义。
爱因斯坦深信,宇宙在本质上是高度和谐的,这种和谐是可以通过数学之美体现出来的。
在更高的层面上,和谐,比对错更重要。而量子力学,在爱因斯坦看来,就是一种不和谐(不完备)的理论。
微观世界的一切只能用概率统计来表达,而具体到单个的粒子,它的状态是不确定的叠加态。把这个粒子放大 N 亿倍,就成了薛定谔的猫。
爱因斯坦认为,根本不存在薛定谔思想实验中那只不死不活的叠加态的猫。猫的死活在观测之前就是定数,只不过愚蠢的人类看不见箱子里发生的一切,只能推测出「50% 活or 50% 死」的概率。
然而,那些发明量子力学的疯狂科学家们,他们竟然说:80:20 的比例,说明每位知友的性别是不确定的,见面时 80% 的可能性会变成男生,20%的可能性变成女生!
因为只有这样我才能解释,为什么线下活动时见面的都是男生,而索要福利的都是女生。至于女生为什么没来,可能是出于一些很简单的原因,比如当天身体不舒服。
仅仅因为我们不知道背后的原因,就认为人的性别是可以按一定概率随机改变的,纯属不切实际的猜想。
如果镭发生衰变,会触发机关打碎装有氰化物的瓶子,猫就会死;如果镭不发生衰变,猫就存活。
猫就理应处于死猫和活猫的叠加状态。这只既死又活的猫就是所谓的“薛定谔猫”。
但是是不可能存在即死又活的猫,则必须在打开箱子后才知道结果。该实验试图从宏观尺度阐述微观尺度的量子叠加原理的问题,巧妙地把微观物质在观测后是粒子还是波的存在形式和宏观的猫联系起来,以此求证观测介入时量子的存在形式。
“薛定谔的猫”的物理学背景在于,一个粒子的态在被观测前具有多种可能态,用物理的语言来讲就是多个波函数的叠加。但是在观测之后,发现这个粒子其实处于叠加的多个波函数中的某一个。这样的实验事实令人费解:为什么粒子的态可以同时处于这个态,又处于那个态?而在观测之后,又固定在一个态上面了?为什么粒子的行为取决于我是否观测它?“薛定谔的猫”这个思想实验通俗易懂,描述了微观领域中,粒子违反逻辑的行为。
以波尔为首的哥本哈根学派认为,测量的动作造成了波函数坍缩三亿体育,原本的量子态服从一定的概率分布三亿体育,最终坍缩成某一个可以存在的量子态三亿体育。
但是爱因斯坦觉得,这种解释就像是上帝在掷骰子选数字一样,根本不靠谱。哥本哈根诠释提出来的时候,被广泛反对,这不符合客观规律。
哥本哈根诠释提出了不确定性原理。不确定原理意味着,一个东西在不在某个地方(处于某个态)是不确定的。这完全令人匪夷所思,但是又是实验事实。
观测者对于被观测物的观测行为存在扰动,换句话说,我们看这个世界,这个世界就存在。不看的话,谁也不知道这个世界是啥样三亿体育。
量子世界的本质就是概率。传统观念中的严格因果关系在量子世界是不存在的,必须以一种统计性的解释来取而代之。换句话说,我们不知道一个东西在不在某个地方,只能说,这个东西有多少可能在某个地方。[3]
“薛定谔的猫”这个思想实验曾经是物理学的“灾难”。它告诉物理学家,我们什么都不知道,什么东西都不是客观的,而且一个东西的存在与否都得看概率,没个准信。这几乎摧毁了物理学家们所信奉的机械唯物主义。也因此,“薛定谔的猫”成为物理学史上最著名的思想实验之一。
薛定谔的猫是奥地利著名物理学家薛定谔于1935年提出的一个思想实验,是把微观领域的量子行为扩展到宏观世界,试图从宏观尺度阐述微观尺度的量子叠加原理的问题。
把一只猫放进一个封闭不透明的箱子中,箱子里面放上一个放射性原子(衰变概率为50%),一个粒子探测装置,一瓶剧毒物质,一把锤子。如果放射性物质发生衰变,粒子探测器就能接收到衰变放射出的粒子,然后发出信号让锤子打碎装着剧毒物质的瓶子,这样猫就必死无疑,如果粒子不衰变,猫就会活着。也就是说猫的状态由粒子是否衰变决定。
根据经典物理学,在盒子里必将发生这两个结果之一,而外部观测者只有打开盒子才能知道里面的结果。在量子的世界里,当盒子处于关闭状态,整个系统则一直保持不确定性的波态,即猫生死叠加。猫到底是死是活必须在盒子打开后,外部观测者观测时,物质以粒子形式表现后才能确定。
薛定谔提出此思想实验的初衷并不是要证明什么,而是表达对波恩统计解释的不满,并对哥本哈根诠释进行讽刺,只不过无心插柳柳成荫......薛定谔用猫实验将微观和宏观联系在了一起,把量子行为拓展到了宏观世界,以此求证观测介入时量子的存在形式。但是,此实验成功地使问题从讨论微观不确定原理变成了宏观不确定原理,客观规律不以人的意志为转移,猫既活又死违背了宏观世界的逻辑思维。
作为物理学四大神兽之一,薛定谔的猫的诞生备受争议,也是目前唯一幸存的一只神兽。随着量子物理学的发展,薛定谔的猫还延伸出了平行宇宙等物理问题和哲学争议。各类学者不断努力试图做出宏观下薛定谔猫的实验,却无法看到怎样去检测是否存在多重宇宙,只能证明量子力学的随机并不是决定论。
以上是简单的介绍,如果需要进一步诠释,需要涉及量子力学的知识。这里需要引入一个概念——叠加态
量子世界区别于宏观世界的显著特点是,在量子的世界里,确定性被不确定性(概率)取代了,无论是粒子的位置、能量还是速度,都处于一种不确定的状态之中。
我们中学就已经学过『电子云』理论,它是原子结构模型发展研究到今天的产物。以氢原子为例进行简单诠释:氢原子是由原子核和核外的一个电子组成的,电子会围绕原子核高速运动。最初波尔在解释氢原子时,认为氢原子的电子存在不同的轨道。但是他发现这种理论只对氢原子有效,稍微复杂一点的原子都无法解释。后来的研究表明:电子并不存在确定的轨道,他的空间位置是随机的,于是人们画出了电子云,表示氢原子中的电子出现在各个不同位置的概率。
在德布罗意提出物质波的概念之后,波恩通过概率说解释了物质波和波函数的含义:波函数表示量子系统中某个事件的概率。
例如:波函数
(r,t)表示一个随着位置r和时间t演化的波函数,那么
(r,t)^{2}就表示在位置r和时刻t找到粒子的概率。波尔等人认为这种观点是正确的,人们把这种对于波函数和量子力学基本问题的解释称为哥本哈根诠释。
因为量子系统的概率诠释,我们在没有进行观测时,不能确定一个例子的位置和速度等信息,因此量子系统就处于一种『叠加态』。例如粒子既可能在A处,也可能在B处,它就处于A和B两处的叠加态;一个原子核可能衰变也可能没有衰变,它就处于衰变和未衰变的叠加态。
这个粒子到底处于A还是处于B,或者原子核到底有没有衰变,就需要进行观测。我们可能发现粒子在A处,也可能发现粒子在B处,一旦确定了,则该粒子由叠加态坍塌成了『本征态』。似乎,我们的观测是会影响结果的,因为在观测之前, 粒子究竟在哪里是不确定的,而观测之后,粒子立刻选择了A位置或B位置,这个过程就是在我们观测的一瞬间发生的。而且从此之后,粒子的状态就确定了。之所以比较难以理解,是因为我们看到的宏观世界不是叠加态,而是处于本征态,我们的思维习惯了这种宏观层面上的理解。
由于量子力学中有太多与我们的常识认知相违背的结论,所以许多科学家对量子力学产生了怀疑,这也导致一些人认为量子力学是一个不完备的理论,它只是一个更深刻的物理结论的某一个侧面,包括量子力学的许多创立者,如爱因斯坦说“上帝不掷骰子”(这里推荐一本书《上帝掷骰子吗――量子物理史话》,作者曹天元),薛定谔也提出了薛定谔的猫。
薛定谔认为量子力学并不是一个完备的理论,尤其是在宏观世界中会有许多与量子力学相违背的事实。他为了把这个事实描述的更加清晰,就提出了薛定谔的猫这个最让物理学家们头疼的思想实验。由于量子系统处于叠加态,因此在人们没有打开盒子看的时候,这些放射性物质处于衰变和没有衰变的叠加态之中,这就使得这只猫处于一种既活又死的叠加态之中。只有打开盒子进行观测,在这一瞬间叠加态会瞬间坍塌成本征态,这只猫就从一个既死又活的状态立刻变为活的或者死的猫。
有人会这样想,既然如此,就把盒子换成个透明的,这样不需要打开盒子也能『悄悄』观察猫的状态。但需要指出,任何的观测行为都会影响实验。比如安装玻璃我们能够看到内部,这是因为有光射入了盒子再反射出来,这些光子就会影响量子系统,所以不能完成实验。猫要处于真正的叠加态之中,必须排除任何外界的干扰,因此人们也无法观测。(关于观测影响实验结果的著名实验当属『双缝干涉实验』,至今仍未有合理的解释。)
这只猫的出现让物理学家们抓狂了。人们差一点就相信了量子力学和哥本哈根诠释,但这个美好的愿望被一只猫打击的粉碎。
对于薛定谔的猫这一问题,现在的物理学界还没有得到有效的解决方案,所以也诞生了一系列假说,比较非常著名的当属“多世界诠释”(平行宇宙(parallel universes))。
虽然科幻片里很多运用这一假说演绎了各种奇幻烧脑的故事,但目前学术界普遍不认同此观点。What a pity!
除了多世界诠释,目前的量子力学诠释主要还包括:退相干诠释(记得电影《彗星来的那一夜》(英文名《Coherence》)里提到了这种假设)、坍缩诠释(又分客观性坍缩诠释和传统的哥本哈根诠释)、隐变量理论(主要是非局域隐变量理论例如德布罗意-玻姆理论)等等。
(1)奥地利物理学家埃尔温·薛定谔是量子力学的奠基人之一。他在1926年提出了薛定谔方程,用以描述量子态的波函数随着时间的演化,并获得诺贝尔奖。
(2)物理学四大神兽分别为:芝诺的龟、拉普拉斯兽、麦克斯韦妖、薛定谔的猫。
芝诺认为,一个人从A点走到B点,要先走完路程的1/2,再走完剩下总路程的1/2,再走完剩下的1/2……如此循环下去,永远不能到终点。这个问题流传了2000多年,直到物理学家牛顿和数学家莱布尼茨创造出微积分后,这只千年神兽才寿终正寝。
据说它诞生于1814年,能通过牛顿的简单公式轻易计算出宇宙中某个原子的过去和未来,还有毕达哥拉斯的“万物皆数”理论作为支撑,一度认为拉普拉斯兽兽坚不可摧。然而相比起千年芝诺龟拉普拉斯兽还是短命了点,它在100多年后就被开尔文和海森堡用量子力学给打败了。
这是麦克斯韦想象出来的一只妖怪。他的提出主要是为了攻破永动机,造出永生具有力量的机器,麦克斯韦妖能够用极快的速度操控分子的运动,用最低限度减少过程中的能量消耗,从而达到不损耗能量也能够获取信息。但量子信息理论的诞生与发展,得以将麦克斯韦妖从热力学第二定律的领土上驱逐出境。
葡萄干蛋糕模型(枣糕模型/西瓜模型)(1904年):由约瑟夫·约翰·汤姆生在发现电子的基础上提出的,是第一个存在着亚原子结构的原子模型。
卢瑟福行星模型(1911年):原子的大部分体积是空的,电子按照一定轨道围绕着一个带正电荷的很小的原子核运转。
玻尔量子化模型(1913年):电子不是随意占据在原子核的周围,而是在固定的层面上运动,当电子从一个层面跃迁到另一个层面时,原子便吸收或释放能量。 为了解释氢原子线状光谱这一事实,玻尔在行星模型的基础上提出了核外电子分层排布的原子结构模型。
电子云模型(现代模型):电子云模型是用统计学的方法对核外电子空间分布概率的形象描绘。用小黑点的疏密程度来表示空间各电子出现概率的大小。
电子在原子核外很小的空间内作高速运动,其运动规律跟一般物体不同,它没有明确的轨道。根据量子力学中的测不准原理(1926年海森堡提出,亦称为不确定性原理),我们不可能同时准确地测定出电子在某一时刻所处的位置和运动速度,也不能描画出它的运动轨迹。因此,人们常用一种能够表示电子在一定时间内在核外空间各处出现机会的模型来描述电子在核外的的运动。在这个模型里,某个点附近的密度表示电子在该处出现的机会的大小。密度大的地方,表明电子在核外空间单位体积内出现的机会多;反之,则表明电子出现的机会少。
(4)哥本哈根诠释(Copenhagen interpretation)是量子力学的一种诠释。根据哥本哈根诠释,在量子力学里,量子系统的量子态,可以用波函数来描述,这是量子力学的一个关键特色,波函数是个数学函数,专门用来计算粒子在某位置或处于某种运动状态的概率,测量的动作造成了波函数坍缩,原本的量子态概率地坍缩成一个测量所允许的量子态。哥本哈根诠释主要包括以下几个观点:
一个量子系统的量子态可以用波函数来完全地表述。波函数代表一个观察者对于量子系统所知道的全部信息。
按照玻恩定则,量子系统的描述是概率性的。一个事件的概率是波函数的绝对值平方。(马克斯·玻恩)
不确定性原理阐明,在量子系统里,一个粒子的位置和动量无法同时被确定。(海森堡)
物质具有波粒二象性;根据互补原理,一个实验可以展示出物质的粒子行为,或波动行为;但不能同时展示出两种行为。(尼尔斯·玻尔)
对应原理:大尺度宏观系统的量子物理行为应该近似于经典行为。(尼尔斯·玻尔与海森堡)
先奉献两段视频,美剧《生活大爆炸》里,Penny被渣男伤心后,纠结该不该接受宅男Leonard的追求,被我们的Sheldon是怎么教人谈恋爱的。
当时薛定谔把猫关在密封的黑盒子里,里面有食物、毒气瓶和放射性原子。放射性原子控制毒气。放射性物质衰变、毒气释放,猫一定会死。原子衰变几率是50%,所以猫死的几率是50%,活的几率是50%,猫的存在有两种可能性。
在你没打开盒子之前,你无法确定猫的状态是生是死,所以猫是处于既生又死的叠加状态,生和死是同时存在的
只有打开盒子的瞬间,两种可能性才能坍塌到一种可能性,要么是好的坍塌到坏的,要么是坏的坍塌到好的,这个过程就是著名的“薛定谔的猫”
比如你有个女朋友,你不确定她爱不爱你,这个时候在你的思维中只会有两个结果,爱或不爱,你不问,这两个结果永远存在,科学上把这个称作《既爱又不爱》,这个也就是对应薛定谔的猫里的,既死又活的状态吧。
只有你问了,才会有结果,但是一旦你问你女朋友,这个结果就会被决定。而这个结果是由于你提出了问题所导致的,也就是你的提问直接干预了结果。
如果时间能倒流,一个人打死了自己的祖母,所以发展下去肯定就没有这个人的出生了,进入了另外一个宇宙,这就叫平行宇宙。
因为你倒流回去对宇宙做出了改变,那么宇宙才会改变。你不倒流回去,宇宙就像这只猫一样,处于谁也不知道的什么状态。
薛定谔的猫是为了证明:微观世界和宏观世界一样,是永恒的,不存在你从哪一次开始观察,也就是不存在所谓时间点。
说它不确定,相信大家都明白,就是某一次的掷硬币究竟是正还是反是不确定的,是各有百分之五十可能的,虽然这一次掷硬币一定是正或是反,但是从10次、100次、1000次来讲,这一次掷的结果是不重要的。
假如硬币反复被掷100次,第一次反、第二次正、第三次正、第四次正、第五次反……
而观察者假如并不是从第一次时开始观察,而是观察了第3次和第4次,观察者会被表象迷惑
但如果假设观察者观察了1亿次,实际上会得出结论,那就是掷硬币的结果是不确定的
总结一下:确定性当中存在不确定性、不确定性当中存在确定性,不要被观察所迷惑。
或者因为看到身边的失败案例,就笃定自己肯定也会失败。甚至庆幸自己还好没有尝试,要不然失败的就是自己了。
我能迅速理解这些高深难懂的物理实验原理,是因为看了很多书,看些通俗易懂的书,可以用来丰富自己,锻炼自己思维,更重要的是吹牛逼都可以吹出高级感。我每周计划看书1本,上大学到现在已经8年了,发现了很多好玩的书籍,搞笑又有营养,符合我的逗比特质。
想要获取的话可以关注我的公号:酸奶的生活观。回复“书单”就可以啦。还可以在公号里找到我。我们可以一起徜徉在轻松搞笑的知识海洋里。耶耶耶~~
量子理论却说猫在黑匣子既死又活,在打开黑匣子的那一刹才“决定”猫的生死。
薛定谔的滚,即当一个妹子叫你滚的时候,你永远不知道她是真的叫你滚还是过来抱紧,此时的你就处于一种既抱又滚的量子力学状态。
作为一个观察者,你的观察行为会影响被观测的客体。而在宏观层面,观测行为对客体的干扰可以忽略不计,而在微观世界,粒子尺度非常小,运行速度非常快,你怎样去测量?要测量就必须与它发生作用,也就改变了它的状态。
你个东西你不去管它,它就在那里,若你研究它,研究结果就会受到你自身的影响。
在自然界,在没有观测者的情况下,螳螂吃夫的现象几乎不存在,是由于观测者,母螳螂做出了吃雄螳螂的举动。
或者你正在寝室照镜子,你的室友忽然回来了,你马上回归正常模式,假装在看书,或思考人生。
认识是认知系统与客观客体相互作用的产物,没有一种认知能脱离主体而获得一种客观和全面的认识
这也就是说,我们无法精确的描述这世界。或者说在大多数情况下,逻辑思维引导我们到达某一点之后就丢下我们不管了。